TY - JOUR
T1 - Usefulness of NGS for Diagnosis of Dominant Beta-Thalassemia and Unstable Hemoglobinopathies in Five Clinical Cases
AU - Rizzuto, Valeria
AU - Koopmann, Tamara T.
AU - Blanco-Álvarez, Adoración
AU - Tazón-Vega, Barbara
AU - Idrizovic, Amira
AU - Díaz de Heredia, Cristina
AU - del Orbe, Rafael
AU - Pampliega, Miriam Vara
AU - Velasco, Pablo
AU - Beneitez, David
AU - Santen, Gijs W. E.
AU - Waisfisz, Quinten
AU - Elting, Mariet
AU - Smiers, Frans J. W.
AU - de Pagter, Anne J.
AU - Kerkhoffs, Jean-Louis H.
AU - Harteveld, Cornelis L.
AU - Mañú-Pereira, Maria del Mar
N1 - Funding Information: This work was generated within the European Reference Network on Rare Hematological Diseases (ERN-EuroBloodNet, FPA 739541). Funding. This study was supported by funding from the authors? institutions and the European Commission H2020-MSCA-ITN-2019, Grant Agreement N860436, ?EVIDENCE.? Publisher Copyright: © Copyright © 2021 Rizzuto, Koopmann, Blanco-Álvarez, Tazón-Vega, Idrizovic, Díaz de Heredia, Del Orbe, Pampliega, Velasco, Beneitez, Santen, Waisfisz, Elting, Smiers, de Pagter, Kerkhoffs, Harteveld and Mañú-Pereira. Copyright: Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/2/5
Y1 - 2021/2/5
N2 - Unstable hemoglobinopathies (UHs) are rare anemia disorders (RADs) characterized by abnormal hemoglobin (Hb) variants with decreased stability. UHs are therefore easily precipitating, causing hemolysis and, in some cases, leading to dominant beta-thalassemia (dBTHAL). The clinical picture of UHs is highly heterogeneous, inheritance pattern is dominant, instead of recessive as in more prevalent major Hb syndromes, and may occur de novo. Most cases of UHs are not detected by conventional testing, therefore diagnosis requires a high index of suspicion of the treating physician. Here, we highlight the importance of next generation sequencing (NGS) methodologies for the diagnosis of patients with dBTHAL and other less severe UH variants. We present five unrelated clinical cases referred with chronic hemolytic anemia, three of them with severe blood transfusion dependent anemia. Targeted NGS analysis was performed in three cases while whole exome sequencing (WES) analysis was performed in two cases. Five different UH variants were identified correlating with patients’ clinical manifestations. Four variants were related to the beta-globin gene (Hb Bristol—Alesha, Hb Debrousse, Hb Zunyi, and the novel Hb Mokum) meanwhile one case was caused by a mutation in the alpha-globin gene leading to Hb Evans. Inclusion of alpha and beta-globin genes in routine NGS approaches for RADs has to be considered to improve diagnosis’ efficiency of RAD due to UHs. Reducing misdiagnoses and underdiagnoses of UH variants, especially of the severe forms leading to dBTHAL would also facilitate the early start of intensive or curative treatments for these patients.
AB - Unstable hemoglobinopathies (UHs) are rare anemia disorders (RADs) characterized by abnormal hemoglobin (Hb) variants with decreased stability. UHs are therefore easily precipitating, causing hemolysis and, in some cases, leading to dominant beta-thalassemia (dBTHAL). The clinical picture of UHs is highly heterogeneous, inheritance pattern is dominant, instead of recessive as in more prevalent major Hb syndromes, and may occur de novo. Most cases of UHs are not detected by conventional testing, therefore diagnosis requires a high index of suspicion of the treating physician. Here, we highlight the importance of next generation sequencing (NGS) methodologies for the diagnosis of patients with dBTHAL and other less severe UH variants. We present five unrelated clinical cases referred with chronic hemolytic anemia, three of them with severe blood transfusion dependent anemia. Targeted NGS analysis was performed in three cases while whole exome sequencing (WES) analysis was performed in two cases. Five different UH variants were identified correlating with patients’ clinical manifestations. Four variants were related to the beta-globin gene (Hb Bristol—Alesha, Hb Debrousse, Hb Zunyi, and the novel Hb Mokum) meanwhile one case was caused by a mutation in the alpha-globin gene leading to Hb Evans. Inclusion of alpha and beta-globin genes in routine NGS approaches for RADs has to be considered to improve diagnosis’ efficiency of RAD due to UHs. Reducing misdiagnoses and underdiagnoses of UH variants, especially of the severe forms leading to dBTHAL would also facilitate the early start of intensive or curative treatments for these patients.
KW - dominant beta-thalassemia
KW - next generation sequencing
KW - rare anemia disorders
KW - unstable hemoglobinopathies
KW - whole exome sequencing
UR - http://www.scopus.com/inward/record.url?scp=85101288252&partnerID=8YFLogxK
U2 - https://doi.org/10.3389/fphys.2021.628236
DO - https://doi.org/10.3389/fphys.2021.628236
M3 - Article
C2 - 33613322
SN - 1664-042X
VL - 12
JO - Frontiers in physiology
JF - Frontiers in physiology
M1 - 628236
ER -