Alveolar but not intravenous S-ketamine inhibits alveolar sodium transport and lung fluid clearance in rats

Marc M. Berger, Bernhard Pitzer, Stefanie Zügel, Catharina W. Wieland, Alexander P. Vlaar, Marcus J. Schultz, Albert Dahan, Peter Bärtsch, Markus W. Hollmann, Heimo Mairbäurl

Research output: Contribution to journalArticleAcademicpeer-review

7 Citations (Scopus)

Abstract

BACKGROUND: S-ketamine is frequently used for analgosedation, especially during sepsis and cardiovascular instability. Because S-ketamine blocks voltage-gated sodium (Na+) channels in neurons and skeletal muscle, it is conceivable that S-ketamine also blocks alveolar epithelial Na+ channels that are crucial for alveolar fluid clearance (AFC). We studied the effects of alveolar and IV S-ketamine on transalveolar Na+ transport and AFC, and investigated whether IV S-ketamine enters the alveolar space in response to endotoxemia-induced pulmonary inflammation. METHODS: Cultured rat alveolar type II (ATII) cells were exposed to S-ketamine and/or the Na+ channel blocker amiloride (100 microM) and transepithelial transport indicated by short circuit current (ISC) was measured in Ussing chambers. AFC was measured in fluid-instilled lungs of anesthetized rats with or without amiloride added to the instillate. S-ketamine was either added to the instillate or injected IV. To induce mild lung injury that might favor the appearance of IV S-ketamine at the alveolar surface, endotoxemia was induced by IV lipopolysaccharide (7.5 mg/kg). RESULTS: In ATII cells, S-ketamine (25 microg/mL) caused a decrease of ISC regardless of apical (-18.9%+/- 1.4%; P <0.001) or basolateral (-20.4% +/- 3.7%; P <0.001) application. In ATII cells pretreated with amiloride, addition of apical or basolateral S-ketamine did not decrease ISC. AFC was approximately 8% per 30 minutes in control rats. S-ketamine (5 microg/mL) in the instillate reduced AFC to 1.1% +/- 1.5% (P = 0.04) by decreasing amiloride-sensitive transepithelial Na+ transport. Intravenous S-ketamine (20 mg/kg) did not affect AFC (P = 0.31). In the presence of lipopolysaccharide-induced inflammation, the concentration of IV-injected S-ketamine in bronchoalveolar lavage fluid remained below the concentration that inhibited AFC. CONCLUSIONS: Although exposure of the rat alveolar epithelium to S-ketamine decreases amiloride-sensitive transalveolar Na+ transport and AFC, IV S-ketamine at clinically relevant bolus concentrations does not affect AFC, even in the presence of mild lung injury
Original languageEnglish
Pages (from-to)164-170
JournalAnesthesia and analgesia
Volume111
Issue number1
DOIs
Publication statusPublished - 2010

Cite this