Anticipation of Appetitive Operant Action Induces Sustained Dopamine Release in the Nucleus Accumbens

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

The mesolimbic dopamine system is implicated in signaling reward-related information as well as in actions that generate rewarding outcomes. These implications are commonly investigated in either pavlovian or operant reinforcement paradigms, where only the latter requires instrumental action. To parse contributions of reward- and action-related information to dopamine signals, we directly compared the two paradigms: male rats underwent either pavlovian or operant conditioning while dopamine release was measured in the nucleus accumbens, a brain region central for processing this information. Task conditions were identical with the exception of the operant-lever response requirement. Rats in both groups released the same quantity of dopamine at the onset of the reward-predictive cue. However, only the operant-conditioning group showed a subsequent, sustained plateau in dopamine concentration throughout the entire 5 s cue presentation (preceding the required action). This dopamine ramp was unaffected by probabilistic reward delivery, occurred exclusively before operant actions, and was not related to task performance or task acquisition as it persisted throughout the 2 week daily behavioral training. Instead, the ramp flexibly increased in duration with longer cue presentation, seemingly modulating the initial cue-onset-triggered dopamine release, that is, the reward prediction error (RPE) signal, as both signal amplitude and sustainment diminished when reward timing was made more predictable. Thus, our findings suggest that RPE and action components of dopamine release can be differentiated temporally into phasic and ramping/sustained signals, respectively, where the latter depends on the former and presumably reflects the anticipation or incentivization of appetitive action, conceptually akin to motivation.

Original languageEnglish
Pages (from-to)3922-3932
Number of pages11
JournalJournal of neuroscience
Volume43
Issue number21
DOIs
Publication statusPublished - 24 May 2023

Keywords

  • dopamine
  • motivated behavior
  • nucleus accumbens
  • operant conditioning
  • pavlovian conditioning
  • striatum

Cite this