Continuous real-time visualization of the human cerebral microcirculation during arteriovenous malformation surgery using orthogonal polarization spectral imaging

Frederik A. Pennings, Can Ince, Gerrit J. Bouma

Research output: Contribution to journalArticleAcademicpeer-review

29 Citations (Scopus)

Abstract

OBJECTIVE: After excision of an arteriovenous malformation (AVM), intracerebral hemorrhage or edema can develop, most probably resulting from hyperperfusion. Changes in the perinidal cerebral microvessels probably play a role in the development of this complication but have not been well studied so far. In this study, microvascular changes associated with resection of an AVM were observed and quantified intraoperatively using orthogonal polarization spectral imaging. METHODS: In two patients undergoing craniotomy for excision of an AVM, microvessel diameter, functional capillary index, and microvascular flow index were assessed during surgery using orthogonal polarization spectral imaging and compared with controls (n = 2). RESULTS: Before excision of the AVM, arterioles were characterized by the observation of individual erythrocytes caused by slowing of flow. In venules, microvascular flow index was 2.0 per image field (sludging flow), and functional capillary index was 1.4 +/- 1.3 cm/mm. After resection, flow velocity increased to a level that individual erythrocytes could not be traced any more in arterioles. Furthermore, both microvascular flow index and functional capillary index increased to 3.7 (high flow) and 2.1 +/- 0.8 cm/mm, respectively. CONCLUSION: With intraoperative orthogonal polarization spectral imaging, microcirculatory hemodynamic changes in the human brain can be readily observed and quantified. In AVM surgery, a dramatic increase in microvascular flow was observed in the perinidal brain tissue, which seems consistent with current hypotheses regarding normal perfusion pressure breakthrough
Original languageEnglish
Pages (from-to)167-71; discussion 167-71
JournalNeurosurgery
Volume59
Issue number1
DOIs
Publication statusPublished - 2006

Cite this