EMERGE: a flexible modelling framework to predict genomic regulatory elements from genomic signatures

Research output: Contribution to journalArticleAcademicpeer-review

31 Citations (Scopus)


Regulatory DNA elements, short genomic segments that regulate gene expression, have been implicated in developmental disorders and human disease. Despite this clinical urgency, only a small fraction of the regulatory DNA repertoire has been confirmed through reporter gene assays. The overall success rate of functional validation of candidate regulatory elements is low. Moreover, the number and diversity of datasets from which putative regulatory elements can be identified is large and rapidly increasing. We generated a flexible and user-friendly tool to integrate the information from different types of genomic datasets, e.g. ATAC-seq, ChIP-seq, conservation, aiming to increase the ease and success rate of functional prediction. To this end, we developed the EMERGE program that merges all datasets that the user considers informative and uses a logistic regression framework, based on validated functional elements, to set optimal weights to these datasets. ROC curve analysis shows that a combination of datasets leads to improved prediction of tissue-specific enhancers in human, mouse and Drosophila genomes. Functional assays based on this prediction can be expected to have substantially higher success rates. The resulting integrated signal for prediction of functional elements can be plotted in a build-in genome browser or exported for further analysis
Original languageEnglish
Pages (from-to)e42
JournalNucleic Acids Research
Issue number5
Publication statusPublished - 2016

Cite this