TY - JOUR
T1 - Guidelines for guideline developers
T2 - A systematic review of grading systems for medical tests
AU - Gopalakrishna, Gowri
AU - Langendam, Miranda W.
AU - Scholten, Rob J.P.M.
AU - Bossuyt, Patrick M.M.
AU - Leeflang, Mariska M.G.
N1 - Funding Information: The authors would like to thank René Spijker for helping to develop the search strategy for this work. This work has been fully funded by the DECIDE Project which is funded by the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement number 258583.
PY - 2013/7/10
Y1 - 2013/7/10
N2 - Background: A variety of systems have been developed to grade evidence and develop recommendations based on the available evidence. However, development of guidelines for medical tests is especially challenging given the typical indirectness of the evidence; direct evidence of the effects of testing on patient important outcomes is usually absent. We compared grading systems for medical tests on how they use evidence in guideline development.Methods: We used a systematic strategy to look for grading systems specific to medical tests in PubMed, professional guideline websites, via personal correspondence, and handsearching back references of key articles. Using the Appraisal of Guidelines for Research and Evaluation (AGREE) instrument as a starting point, we defined two sets of characteristics to describe these systems: methodological and process ones. Methodological characteristics are features relating to how evidence is gathered, appraised, and used in recommendations. Process characteristics are those relating to the guideline development process. Data were extracted in duplicate and differences resolved through discussion.Results: Twelve grading systems could be included. All varied in the degree to which methodological and process characteristics were addressed. Having a clinical scenario, identifying the care pathway and/or developing an analytical framework, having explicit criteria for appraising and linking indirect evidence, and having explicit methodologies for translating evidence into recommendations were least frequently addressed. Five systems at most addressed these, to varying degrees of explicitness and completeness. Process wise, features most frequently addressed included involvement of relevant professional groups (8/12), external peer review of completed guidelines (9/12), and recommendations on methods for dissemination (8/12). Characteristics least often addressed were whether the system was piloted (3/12) and funder information (3/12).Conclusions: Five systems for grading evidence about medical tests in guideline development addressed to differing degrees of explicitness the need for and appraisal of different bodies of evidence, the linking of such evidence, and its translation into recommendations. At present, no one system addressed the full complexity of gathering, assessing and linking different bodies of evidence.
AB - Background: A variety of systems have been developed to grade evidence and develop recommendations based on the available evidence. However, development of guidelines for medical tests is especially challenging given the typical indirectness of the evidence; direct evidence of the effects of testing on patient important outcomes is usually absent. We compared grading systems for medical tests on how they use evidence in guideline development.Methods: We used a systematic strategy to look for grading systems specific to medical tests in PubMed, professional guideline websites, via personal correspondence, and handsearching back references of key articles. Using the Appraisal of Guidelines for Research and Evaluation (AGREE) instrument as a starting point, we defined two sets of characteristics to describe these systems: methodological and process ones. Methodological characteristics are features relating to how evidence is gathered, appraised, and used in recommendations. Process characteristics are those relating to the guideline development process. Data were extracted in duplicate and differences resolved through discussion.Results: Twelve grading systems could be included. All varied in the degree to which methodological and process characteristics were addressed. Having a clinical scenario, identifying the care pathway and/or developing an analytical framework, having explicit criteria for appraising and linking indirect evidence, and having explicit methodologies for translating evidence into recommendations were least frequently addressed. Five systems at most addressed these, to varying degrees of explicitness and completeness. Process wise, features most frequently addressed included involvement of relevant professional groups (8/12), external peer review of completed guidelines (9/12), and recommendations on methods for dissemination (8/12). Characteristics least often addressed were whether the system was piloted (3/12) and funder information (3/12).Conclusions: Five systems for grading evidence about medical tests in guideline development addressed to differing degrees of explicitness the need for and appraisal of different bodies of evidence, the linking of such evidence, and its translation into recommendations. At present, no one system addressed the full complexity of gathering, assessing and linking different bodies of evidence.
KW - Diagnostic
KW - Grade
KW - Grading systems
KW - Guideline development
KW - Medical tests
KW - Quality of evidence
UR - http://www.scopus.com/inward/record.url?scp=84880016517&partnerID=8YFLogxK
U2 - https://doi.org/10.1186/1748-5908-8-78
DO - https://doi.org/10.1186/1748-5908-8-78
M3 - Review article
C2 - 23842037
SN - 1748-5908
VL - 8
SP - 78
JO - IMPLEMENTATION SCIENCE
JF - IMPLEMENTATION SCIENCE
IS - 1
M1 - 78
ER -