Increased prothrombin activation in protein S-deficient plasma under flow conditions on endothelial cell matrix: an independent anticoagulant function of protein S in plasma

C. van't Veer, T. M. Hackeng, D. Biesbroeck, J. J. Sixma, B. N. Bouma

Research output: Contribution to journalArticleAcademicpeer-review

33 Citations (Scopus)

Abstract

Protein S is a vitamin K-dependent nonenzymatic coagulation factor involved in the regulation of activated protein C (aPC). In this study, we report an aPC-independent anticoagulant function of protein S in plasma under flow conditions. Plasma, anticoagulated with low-molecular-weight heparin allowing tissue factor-dependent prothrombin activation, was perfused at a wall shear rate of 100 s-1 over tissue factor containing matrices of stimulated endothelial cells placed in a perfusion chamber. Fractions were collected in time at the outlet and prothrombin activation was determined by measuring the activation fragment F1+2 of prothrombin. In normal plasma, a time-dependent prothrombin activation was detected by the generation of fragment1+2. Prothrombin activation had ceased after 12 minutes perfusion, independent of the amount of tissue factor present in the matrix. Depletion of protein S from plasma or inhibition of protein S in plasma by monoclonal antibodies induced a 5- to 25-fold increase of prothrombin activation on the procoagulant endothelial cell matrix. A prolonged prothrombin activation was detected in protein S-depleted plasma up to 20 minutes after onset of the thrombin generation. The increased prothrombin activation in protein S-depleted plasma could not be explained by the absence of the cofactor function of protein S for aPC because depletion of protein C from plasma did not result in increased prothrombin activation. These data provide further evidence for a strong anticoagulant function of protein S in plasma independent from activated protein C
Original languageEnglish
Pages (from-to)1815-1821
JournalBlood
Volume85
Issue number7
Publication statusPublished - 1995

Cite this