Patient-tailored plate for bone fixation and accurate 3D positioning in corrective osteotomy

J. G. G. Dobbe, J. C. Vroemen, S. D. Strackee, G. J. Streekstra

Research output: Contribution to journalArticleAcademicpeer-review

35 Citations (Scopus)

Abstract

A bone fracture may lead to malunion of bone segments, which gives discomfort to the patient and may lead to chronic pain, reduced function and finally to early osteoarthritis. Corrective osteotomy is a treatment option to realign the bone segments. In this procedure, the surgeon tries to improve alignment by cutting the bone at, or near, the fracture location and fixates the bone segments in an improved position, using a plate and screws. Three-dimensional positioning is very complex and difficult to plan, perform and evaluate using standard 2D fluoroscopy imaging. This study introduces a new technique that uses preoperative 3D imaging to plan positioning and design a patient-tailored fixation plate that only fits in one way and realigns the bone segments as planned. The method is evaluated using artificial bones and renders realignment highly accurate and very reproducible (d(err) < 1.2 ± 0.8 mm and φ(err) < 1.8° ± 2.1°). Application of a patient-tailored plate is expected to be of great value for future corrective osteotomy surgeries
Original languageEnglish
Pages (from-to)19-27
JournalMedical & Biological Engineering & Computing
Volume51
Issue number1-2
DOIs
Publication statusPublished - 2013

Cite this