Quantitative trait loci mapping of circulating metabolites in cerebrospinal fluid to uncover biological mechanisms involved in brain-related phenotypes

Lianne M Reus, Toni Boltz, Marcelo Francia, Merel Bot, Naren Ramesh, Maria Koromina, Yolande A L Pijnenburg, Anouk den Braber, Wiesje M van der Flier, Pieter Jelle Visser, Sven J van der Lee, Betty M Tijms, Charlotte E Teunissen, Loes Olde Loohuis, Roel A Ophoff

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Genomic studies of molecular traits have provided mechanistic insights into complex disease, though these lag behind for brain-related traits due to the inaccessibility of brain tissue. We leveraged cerebrospinal fluid (CSF) to study neurobiological mechanisms in vivo , measuring 5,543 CSF metabolites, the largest panel in CSF to date, in 977 individuals of European ancestry. Individuals originated from two separate cohorts including cognitively healthy subjects (n=490) and a well-characterized memory clinic sample, the Amsterdam Dementia Cohort (ADC, n=487). We performed metabolite quantitative trait loci (mQTL) mapping on CSF metabolomics and found 126 significant mQTLs, representing 65 unique CSF metabolites across 51 independent loci. To better understand the role of CSF mQTLs in brain-related disorders, we performed a metabolome-wide association study (MWAS), identifying 40 associations between CSF metabolites and brain traits. Similarly, over 90% of significant mQTLs demonstrated colocalized associations with brain-specific gene expression, unveiling potential neurobiological pathways.

Original languageEnglish
JournalBiorxiv
DOIs
Publication statusPublished - 27 Sept 2023

Cite this