Abstract

Accumulation of amyloid beta (Aβ) is one of the pathological hallmarks of Alzheimer’s disease (AD), which can be visualized using [18F]florbetapir positron emission tomography (PET). The aim of this study was to evaluate various parametric methods and to assess their test-retest (TRT) reliability. Two 90 min dynamic [18F]florbetapir PET scans, including arterial sampling, were acquired (n = 8 AD patient, n = 8 controls). The following parametric methods were used; (reference:cerebellum); Logan and spectral analysis (SA), receptor parametric mapping (RPM), simplified reference tissue model2 (SRTM2), reference Logan (rLogan) and standardized uptake value ratios (SUVr(50–70)). BPND+1, DVR, VT and SUVr were compared with corresponding estimates (VT or DVR) from the plasma input reversible two tissue compartmental (2T4k_VB) model with corresponding TRT values for 90-scan duration. RPM (r2 = 0.92; slope = 0.91), Logan (r2 = 0.95; slope = 0.84) and rLogan (r2 = 0.94; slope = 0.88), and SRTM2 (r2 = 0.91; slope = 0.83), SA (r2 = 0.91; slope = 0.88), SUVr (r2 = 0.84; slope = 1.16) correlated well with their 2T4k_VB counterparts. RPM (controls: 1%, AD: 3%), rLogan (controls: 1%, AD: 3%) and SUVr(50–70) (controls: 3%, AD: 8%) showed an excellent TRT reliability. In conclusion, most parametric methods showed excellent performance for [18F]florbetapir, but RPM and rLogan seem the methods of choice, combining the highest accuracy and best TRT reliability.
Original languageEnglish
Pages (from-to)569-578
Number of pages10
JournalJournal of cerebral blood flow and metabolism
Volume41
Issue number3
DOIs
Publication statusPublished - 1 Mar 2021

Keywords

  • Alzheimer’s disease
  • Amyloid PET
  • PET quantification
  • [F]florbetapir
  • parametric imaging methods
  • test–retest design

Cite this