TY - JOUR
T1 - Review Article Fronto-striatal dysregulation in drug addiction and pathological gambling
T2 - Consistent inconsistencies?
AU - Limbrick-Oldfield, Eve H.
AU - Van Holst, Ruth J.
AU - Clark, Luke
PY - 2013
Y1 - 2013
N2 - Alterations in appetitive processing are central to the major psychological theories of addiction, with differential predictions made by the reward deficiency, incentive salience, and impulsivity hypotheses. Functional MRI has become the chief means of testing these predictions, with experiments reliably highlighting disturbances at the level of the striatum, medial prefrontal cortex, and affiliated regions. However, demonstrations of hypo-reactivity and hyper-reactivity of this circuitry in drug addicted groups are reported in approximately equal measure. Similar findings are echoed in the emergent neuroimaging literature on pathological gambling, which has recently witnessed a coming of age. The first aim of this article is to consider some of the methodological aspects of these experiments that could influence the observed direction of group-level effects, including the baseline condition, trial structure and timing, and the nature of the appetitive cues (drug-related, monetary, or primary rewards). The second aim is to highlight the conceptual traction that is offered by pathological gambling, as a model of a 'toxicity free' addiction and an illness where tasks of monetary reinforcement afford a more direct mapping to the abused commodity. Our conclusion is that relatively subtle decisions in task design appear capable of driving group differences in fronto-striatal circuitry in entirely opposing directions, even with tasks and task variants that look ostensibly similar. Differentiation between the psychological theories of addiction will require a greater breadth of experimental designs, with more research needed on processing of primary appetitive cues, aversive processing, and in vulnerable/at-risk groups.
AB - Alterations in appetitive processing are central to the major psychological theories of addiction, with differential predictions made by the reward deficiency, incentive salience, and impulsivity hypotheses. Functional MRI has become the chief means of testing these predictions, with experiments reliably highlighting disturbances at the level of the striatum, medial prefrontal cortex, and affiliated regions. However, demonstrations of hypo-reactivity and hyper-reactivity of this circuitry in drug addicted groups are reported in approximately equal measure. Similar findings are echoed in the emergent neuroimaging literature on pathological gambling, which has recently witnessed a coming of age. The first aim of this article is to consider some of the methodological aspects of these experiments that could influence the observed direction of group-level effects, including the baseline condition, trial structure and timing, and the nature of the appetitive cues (drug-related, monetary, or primary rewards). The second aim is to highlight the conceptual traction that is offered by pathological gambling, as a model of a 'toxicity free' addiction and an illness where tasks of monetary reinforcement afford a more direct mapping to the abused commodity. Our conclusion is that relatively subtle decisions in task design appear capable of driving group differences in fronto-striatal circuitry in entirely opposing directions, even with tasks and task variants that look ostensibly similar. Differentiation between the psychological theories of addiction will require a greater breadth of experimental designs, with more research needed on processing of primary appetitive cues, aversive processing, and in vulnerable/at-risk groups.
KW - Addiction
KW - Appetitive processing
KW - Pathological gambling fMRI Ventral striatum
UR - http://www.scopus.com/inward/record.url?scp=84875736120&partnerID=8YFLogxK
U2 - https://doi.org/10.1016/j.nicl.2013.02.005
DO - https://doi.org/10.1016/j.nicl.2013.02.005
M3 - Review article
SN - 2213-1582
VL - 2
SP - 385
EP - 393
JO - NeuroImage: Clinical
JF - NeuroImage: Clinical
IS - 1
ER -