Upstream signaling of protein kinase C-epsilon in xenon-induced pharmacological preconditioning. Implication of mitochondrial adenosine triphosphate dependent potassium channels and phosphatidylinositol-dependent kinase-1

Nina C. Weber, Octavian Toma, Halil Damla, Jessica I. Wolter, Wolfgang Schlack, Benedikt Preckel

Research output: Contribution to journalArticleAcademicpeer-review

45 Citations (Scopus)

Abstract

Xenon elicits preconditioning of the myocardium via protein kinase C-epsilon. We determined the implication of (1) the mitochondrial adenosinetriphosphate dependent potassium (K(ATP)) channels and (2) the 3'phosphatidylinositol-dependent kinase-1 (PDK-1) in activating protein kinase C-epsilon. For infarct size measurements, anaesthetized rats were subjected to 25 min of coronary artery occlusion followed by 120 min of reperfusion. Rats received xenon 70% during three 5-min periods before ischaemia with or without the K(ATP) channel blocker 5-hydroxydecanoate or Wortmannin as PI3K/PDK-1 inhibitor. For Western blot, hearts were excised at five time points after xenon preconditioning (Control, 15, 25, 35, 45 min). Infarct size was reduced from 42+/-6% (mean+/-S.D.) to 27+/-8% after xenon preconditioning (P <0.05). Western blot revealed an increased activation of PKC-epsilon after 45 min and of PDK-1 after 25 min during xenon preconditioning. 5-hydroxydecanoate and Wortmannin blocked both effects. PKC-epsilon is activated downstream of mitochondrial K(ATP) channels and PDK-1. Both pathways are functionally involved in xenon preconditioning
Original languageEnglish
Pages (from-to)1-9
JournalEuropean journal of pharmacology
Volume539
Issue number1-2
DOIs
Publication statusPublished - 2006

Cite this