pIgR and PECAM-1 bind to pneumococcal adhesins RrgA and PspC mediating bacterial brain invasion

Federico Iovino, Joo-Yeon Engelen-Lee, Matthijs Brouwer, Diederik van de Beek, Arie van der Ende, Merche Valls Seron, Peter Mellroth, Sandra Muschiol, Jan Bergstrand, Jerker Widengren, Birgitta Henriques-Normark

Research output: Contribution to journalArticleAcademicpeer-review

69 Citations (Scopus)

Abstract

Streptococcus pneumoniae is the main cause of bacterial meningitis, a life-threating disease with a high case fatality rate despite treatment with antibiotics. Pneumococci cause meningitis by invading the blood and penetrating the blood-brain barrier (BBB). Using stimulated emission depletion (STED) super-resolution microscopy of brain biopsies from patients who died of pneumococcal meningitis, we observe that pneumococci colocalize with the two BBB endothelial receptors: polymeric immunoglobulin receptor (pIgR) and platelet endothelial cell adhesion molecule (PECAM-1). We show that the major adhesin of the pneumococcal pilus-1, RrgA, binds both receptors, whereas the choline binding protein PspC binds, but to a lower extent, only pIgR. Using a bacteremia-derived meningitis model and mutant mice, as well as antibodies against the two receptors, we prevent pneumococcal entry into the brain and meningitis development. By adding antibodies to antibiotic (ceftriaxone)-treated mice, we further reduce the bacterial burden in the brain. Our data suggest that inhibition of pIgR and PECAM-1 has the potential to prevent pneumococcal meningitis
Original languageEnglish
Pages (from-to)1619-1630
JournalJournal of Experimental Medicine
Volume214
Issue number6
DOIs
Publication statusPublished - 2017

Cite this