TY - JOUR
T1 - ShrinkCRISPR
T2 - a flexible method for differential fitness analysis of CRISPR-Cas9 screen data
AU - Tissier, Renaud L.M.
AU - Schie, Janne J.M.van
AU - Wolthuis, Rob M.F.
AU - Lange, Job de
AU - Menezes, Renée de
N1 - Funding Information: This work was funded by KWF project number 10701. Publisher Copyright: © 2023, The Author(s).
PY - 2023/12/1
Y1 - 2023/12/1
N2 - Background: CRISPR screens provide large-scale assessment of cellular gene functions. Pooled libraries typically consist of several single guide RNAs (sgRNAs) per gene, for a large number of genes, which are transduced in such a way that every cell receives at most one sgRNA, resulting in the disruption of a single gene in that cell. This approach is often used to investigate effects on cellular fitness, by measuring sgRNA abundance at different time points. Comparing gene knockout effects between different cell populations is challenging due to variable cell-type specific parameters and between replicates variation. Failure to take those into account can lead to inflated or false discoveries. Results: We propose a new, flexible approach called ShrinkCRISPR that can take into account multiple sources of variation. Impact on cellular fitness between conditions is inferred by using a mixed-effects model, which allows to test for gene-knockout effects while taking into account sgRNA-specific variation. Estimates are obtained using an empirical Bayesian approach. ShrinkCRISPR can be applied to a variety of experimental designs, including multiple factors. In simulation studies, we compared ShrinkCRISPR results with those of drugZ and MAGeCK, common methods used to detect differential effect on cell fitness. ShrinkCRISPR yielded as many true discoveries as drugZ using a paired screen design, and outperformed both drugZ and MAGeCK for an independent screen design. Although conservative, ShrinkCRISPR was the only approach that kept false discoveries under control at the desired level, for both designs. Using data from several publicly available screens, we showed that ShrinkCRISPR can take data for several time points into account simultaneously, helping to detect early and late differential effects. Conclusions: ShrinkCRISPR is a robust and flexible approach, able to incorporate different sources of variations and to test for differential effect on cell fitness at the gene level. These improve power to find effects on cell fitness, while keeping multiple testing under the correct control level and helping to improve reproducibility. ShrinkCrispr can be applied to different study designs and incorporate multiple time points, making it a complete and reliable tool to analyze CRISPR screen data.
AB - Background: CRISPR screens provide large-scale assessment of cellular gene functions. Pooled libraries typically consist of several single guide RNAs (sgRNAs) per gene, for a large number of genes, which are transduced in such a way that every cell receives at most one sgRNA, resulting in the disruption of a single gene in that cell. This approach is often used to investigate effects on cellular fitness, by measuring sgRNA abundance at different time points. Comparing gene knockout effects between different cell populations is challenging due to variable cell-type specific parameters and between replicates variation. Failure to take those into account can lead to inflated or false discoveries. Results: We propose a new, flexible approach called ShrinkCRISPR that can take into account multiple sources of variation. Impact on cellular fitness between conditions is inferred by using a mixed-effects model, which allows to test for gene-knockout effects while taking into account sgRNA-specific variation. Estimates are obtained using an empirical Bayesian approach. ShrinkCRISPR can be applied to a variety of experimental designs, including multiple factors. In simulation studies, we compared ShrinkCRISPR results with those of drugZ and MAGeCK, common methods used to detect differential effect on cell fitness. ShrinkCRISPR yielded as many true discoveries as drugZ using a paired screen design, and outperformed both drugZ and MAGeCK for an independent screen design. Although conservative, ShrinkCRISPR was the only approach that kept false discoveries under control at the desired level, for both designs. Using data from several publicly available screens, we showed that ShrinkCRISPR can take data for several time points into account simultaneously, helping to detect early and late differential effects. Conclusions: ShrinkCRISPR is a robust and flexible approach, able to incorporate different sources of variations and to test for differential effect on cell fitness at the gene level. These improve power to find effects on cell fitness, while keeping multiple testing under the correct control level and helping to improve reproducibility. ShrinkCrispr can be applied to different study designs and incorporate multiple time points, making it a complete and reliable tool to analyze CRISPR screen data.
KW - CRISPR-Cas9
KW - Empirical Bayes
KW - Genetic screen
KW - Multivariate model
UR - http://www.scopus.com/inward/record.url?scp=85147319488&partnerID=8YFLogxK
U2 - https://doi.org/10.1186/s12859-023-05142-1
DO - https://doi.org/10.1186/s12859-023-05142-1
M3 - Article
C2 - 36732720
SN - 1471-2105
VL - 24
JO - BMC Bioinformatics
JF - BMC Bioinformatics
IS - 1
M1 - 36
ER -